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Abstract

‘‘Candidatus Liberibacter solanacearum’’ (Lso) is an economically important pathogen of solanaceous crops and the putative
causal agent of zebra chip disease of potato (Solanum tuberosum L.). This pathogen is transmitted to solanaceous species by
the potato psyllid, Bactericera cockerelli (Šulc), but many aspects of the acquisition and transmission processes have yet to
be elucidated. The present study was conducted to assess the interacting effects of acquisition access period, incubation
period, and host plant on Lso titer in psyllids, the movement of Lso from the alimentary canal to the salivary glands of the
insect, and the ability of psyllids to transmit Lso to non-infected host plants. Following initial pathogen acquisition, the
probability of Lso presence in the alimentary canal remained constant from 0 to 3 weeks, but the probability of Lso being
present in the salivary glands increased with increasing incubation period. Lso copy numbers in psyllids peaked two weeks
after the initial pathogen acquisition and psyllids were capable of transmitting Lso to non-infected host plants only after a
two-week incubation period. Psyllid infectivity was associated with colonization of insect salivary glands by Lso and with Lso
copy numbers .10,000 per psyllid. Results of our study indicate that Lso requires a two-week latent period in potato
psyllids and suggest that acquisition and transmission of Lso by psyllids follows a pattern consistent with a propagative,
circulative, and persistent mode of transmission.
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Introduction

‘‘Candidatus Liberibacter solanacearum’’ (Lso) (Rhizobiales:

Rhizobiaceae) is an economically important pathogen of solana-

ceous crops (Solanales: Solanaceae) in North and Central America

and New Zealand [1–4]. This bacterium is associated with zebra

chip disease of potato (Solanum tuberosum L.), which is characterized

by striped patterns in tubers that render them unmarketable [4].

Two haplotypes of Lso have been documented in solanaceous

crops and designated as A and B [5–7]. Both Lso haplotypes are

transmitted among solanaceous host plants by the potato psyllid,

Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) [4,8–9]. Four

haplotypes of potato psyllid have been described and appear

related to geographic regions in the United States [10–13]. The

haplotypes have been referred to as Central, Western, Northwest-

ern, and Southwestern [10–13]. Mechanisms by which the potato

psyllid acquires and transmits Lso are poorly understood.

Results of our previous study indicated that Lso titer in potato

psyllids increased for 15 days following the pathogen acquisition

and then remained constant through the remaining duration of the

study [14]. Lso has been shown to be distributed in all parts of the

potato psyllid, including the alimentary canal, salivary glands, and

bacteriomes [15]. It is presumed that transmission of Lso to new

host plants can only occur after the pathogen has colonized the

salivary glands of the vector. Little is known on Lso latent period in

the potato psyllid or the relationships among transmission of Lso,

Lso titer in the psyllid, and infection of specific psyllid organs. The

overall objective of this study was to investigate mode of

acquisition and transmission of Lso by the potato psyllid. Specific

objectives were to 1) determine the latent period of Lso in potato

psyllid, 2) assess the relationship between the latent period of Lso

and its copy numbers in psyllids, and 3) assess the relationship

between the latent period of Lso and infection of the salivary

glands or alimentary canal of the insect.

Materials and Methods

Insects and plants
Lso-free and -infected potato psyllid colonies were established at

USDA-ARS in Wapato, WA (46u 28’ 10.62’’ N and 120u 22’

43.10’’ W) from insects originally collected from commercial

potato fields near Dalhart, TX (36u 00’ 35.38’’ N and 102u 46’

40.51’’ W) in 2007; no collection or import permit was required.

Using high resolution melting analysis (Table 1) as described by
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Swisher et al. [10–11] and Chapman et al. [16], the psyllids were

determined to be of the Central haplotype (Table 1). The colonies

were maintained at 29uC with a 16:8 (L:D) h photoperiod and

50% relative humidity (RH) in a controlled environment room.

Samples of insects from both colonies were regularly tested for the

presence or absence of Lso using conventional polymerase chain

reaction (cPCR).

Potato, tomato (Solanum lycopersicum L.), and sweet potato

(Ipomoea batatas (L.) Lam) were used in the present study as host

plants for the potato psyllid. Plants were grown in a greenhouse in

0.5-L pots (Kord Products, Toronto, Ontario, Canada) filled with

a soil media consisting of 86% sand, 13.4% peat moss, 0.5% Apex

time release fertilizer (J. R. Simplot Co., Lathrop, CA), and 0.1%

Micromax micronutrients (Scotts Co., Marysville, OH). Sweet

potato ‘White Delight’ plants were established from the propaga-

tion of stem cuttings, ‘Atlantic’ potato plants were grown from

certified disease-free tubers, and ‘Early Girl’ tomato plants were

grown from seed (Ed Hume, Inc., Puyallup, WA). Lso-inoculum

plants were generated by confining ten Lso-infected adult psyllids

to one-month old potato or tomato plants for three days. The

insects were removed from plants by fumigation with methyl

bromide, and then the plants were maintained in a greenhouse

until foliar symptoms associated with Lso infection were observed

[14]. Following inoculation, foliar symptoms were observed on

potato and tomato inoculum plants after about one and two

months, respectively, and Lso infection was confirmed by both

cPCR and quantitative real-time PCR (qPCR) prior to conducting

experiments. Our previous study [14] showed that Lso titer in

tomato plants was 200- to 400-fold higher than in potato plants;

however, there was no difference in Lso titer in potato psyllid

adults two weeks following acquisition of the bacterium from

either infected potato or tomato plants, regardless of acquisition

access period. Therefore, we did not quantify Lso titer in inoculum

plants prior to conducting the acquisition and inoculation

experiments in the present study but rather relied on visual Lso

infection symptoms in the inoculum plants and used cPCR to

confirm infection. Although a suitable host for the potato psyllid,

sweet potato is not a host to Lso [14]; thus, this plant species was

used to maintain psyllids following acquisition of the bacterium

from the inoculum plants.

Latent period study
The experimental design to determine time between Lso

acquisition and effective transmission by the potato psyllid (latent

period) was similar to that described by Sengoda et al. [14]. Non-

infected psyllids were exposed to Lso by releasing the insects onto

plants in cages (#1462W BugDorm-2, BioQuip Products, Rancho

Dominguez, CA) kept in a greenhouse maintained at 24-28uC
with supplemental lighting to provide a 16:8 (L:D) h photoperiod.

Each cage contained either five potato or tomato inoculum plants.

After the acquisition access periods (AAP) of 24 or 72 h, insects

were removed from the inoculum plants using an aspirator and

transferred to sweet potato plants. Since sweet potato is not a host

for Lso, insects could acquire Lso only from the 24- or 72-h

exposure to the inoculum (potato or tomato) plants [14].

Beginning immediately after removing the insects from the

inoculum plants, samples of 30 insects were collected from sweet

potato each week for 3 weeks (Lso incubation period). At each

collection, (0, 1, 2, and 3 weeks of incubation period), each insect

was individually confined to a three-week old non-infected potato

plant for 24 h. Positive controls were established by confining

single insects obtained from an Lso-infected colony to each of 5

plants for 24 h. After the 24-h inoculation access period, the insects

were collected and were either stored at –20uC pending PCR

analysis or were immediately processed by fluorescence in situ

hybridization to track Lso movement. The inoculated potato

Table 1. Primers and probes used in this study.

Primers/probes Sequence 59 - 39 Location Size (bp) References

OA2a GCGCTTATTTTTAATAGGAGCGGCA 16S rDNA 1168 Liefting et al.[2]

OI2ca GCCTCGCGACTTCGCAACCCAT 16S-23S rDNA - Jagoueix et al. [20]

CL-ZC-Fb TCGGATTTAGGAGTGGGTAAGTGG Outer membrane protein 185 Crosslin et al. [21]

CL-ZC-Rb ACCCTGAACCTCAATTTTACTGAC Outer membrane protein - Crosslin et al. [21]

CL-ZC-Pb 6Fam-TTGGCACCATGAACCGCAGAAACACTAAT-Tamra - Crosslin et al. [21]

28SFc TCGGTCGTTTCCGTTGGT 28S rDNA 67 Sengoda et al. [14]

28SRc GGCGCACACGAATCAACAT 28S rDNA - Sengoda et al. [14]

28SPc 6Fam-ACGCGACCAGCGTTGCGTCTTC-Tamra - Sengoda et al. [14]

Lso-SSR-1Fd TTATTTTGAGATGGTTTGTTAAATG Phosphatidylserine synthase 180/240 Lin et al. [6]; Wen
et al. [7]

Lso-SSR-1Rd TATTATCATTCTATTGCCTATTTCG Phosphatidylserine synthase Lin et al. [6]; Wen
et al. [7]

Lso FISH probee Alexa488- GCCTCGCGACTTCGCAACCCAT 16S-23S Jagoueix et al. [20];
Cooper et al. [15]

CO1 F3f TACGCCATACTAGCAATCGG Cytochrome oxidase 94 Swisher et al. [10]

BB bc melt CO1
reversef

TGAAATAGGCACGAGAATCAA Cytochrome oxidase Chapman et al. [16]

aConventional PCR of Lso.
bQuantitative real-time PCR of Lso.
cQuantitative real-time PCR of potato psyllid.
dLso haplotype differentiation, 240 bp = Lso haplotype A; 180 bp = Lso haplotype B.
eFluorescence in situ hybridization of Lso.
fPsyllid haplotyping primers.
doi:10.1371/journal.pone.0093475.t001
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plants were maintained in the greenhouse and periodically

observed for foliar symptoms of Lso infection. Beginning one

month after inoculation and every two weeks thereafter, samples of

the leaf, petiole, and stem tissues were collected from each plant to

test for the presence of Lso using both cPCR and qPCR until the

plants were dead or the bacterium was detected. It was necessary

to test plants for Lso every two weeks because infected plants often

decline and die quickly before they can produce tubers. Following

death of the above-ground portions of the plants, any produced

tubers were assessed for the presence or absence of zebra chip

symptoms as described by Munyaneza et al. [8–9].

The two Lso-tracking analyses – qPCR analysis and fluores-

cence in situ hybridization – were each conducted twice (two trials)

with different cohorts of insects and different inoculum plants.

Each trial included 8 to 10 insects per combination of AAP (24 or

72 h), inoculum host (potato or tomato), and week of incubation

period (0, 1, 2, or 3 weeks). The fluorescence in situ hybridization

trials included two non-infected psyllids for each week of the

incubation period, to serve as negative controls.

Nucleic acid extractions and polymerase chain reaction
(cPCR and qPCR)

Total DNA was extracted from plants and insects using a

cetyltrimethlyammonium bromide (CTAB) buffer extraction

method [17–19]. About 400 mg of leaf and plant tissues were

macerated in BioReba sample bags with 1 ml of extraction buffer

(100 mM Tris-HCl, pH 8.0, 50 mM EDTA, 500 mM NaCl, and

10 mM mercaptoethanol) using a Homex 6 homogenizer (BioR-

eba, Reinach, Switzerland). Following this, 300 ml of macerate was

collected, mixed with 80 ml of lysozyme (50 mg/ml in 10 mMTris-

HCl, pH 8.0, Sigma-Aldrich, St. Louis, MO), and incubated for

30 min at 37uC. After incubation, 500 ml of CTAB buffer (2%

CTAB, 1.4MNaCl, 20 mM EDTA, 100 mM Tris-HCl, pH 8.0,

and 0.2% mercaptoethanol) was added to each sample of

macerated plant tissue. Whole insects suspended in 600 ml of

CTAB buffer were macerated using a micropestle. Plant and insect

macerates in CTAB buffer were incubated for 30 min at 65uC,

then maintained at room temperature for 3 min before adding

500 ml (plant samples) or 600 ml (insect samples) of ice-cold

chloroform. After vortexing the samples, the samples were

centrifuged at 13,000 6 g for 10 min and the resulting aqueous

layer was added to 500 ml of isopropanol and glycogen (1 ml/ml).

DNA was recovered by centrifugation at 16,000 6 g for 10 min

after maintaining the tubes on ice for 20 min. The pellets were

washed with ice-cold 70% ethanol, centrifuged at 13,0006g for 3

min, and allowed to air dry. Plant DNA was resuspended in 100 ml

of sterile water whereas insect DNA was resuspended in 50 ml of

sterile water.

Genomic DNA from insects was quantified using Quant-iTTM

PicoGreen H dsDNA Reagent and Kits (Molecular probes, Cat.

No: P11496). The fluorescence (excitation ,480 nm, emission

,520 nm) was measured using Thermo Scientific Fluoroskan

Ascent Microplate Fluorometer. Final DNA concentrations were

adjusted to 2 ng/ml and 5 ml were used for both cPCR and qPCR

(10 ng/reaction of insect DNA).

Initially, plants and insect samples were tested for Lso using

cPCR primers OA2/OI2c targeting the 16S rDNA region (Table

1) [1–2,20]. Amplifications were performed in 50 ml reactions with

Green Go Taq Polymerase (Promega, Madison, WI) according to

the manufacturer’s instructions. For each reaction, 20 pmol of

each primer and 2 ml of DNA extract were added and incubated

under the following conditions: initial denaturation for 3 min at

94uC and then amplification for 30 sec at 94uC, 30 sec at 65uC, 1

min at 72uC for 39 cycles, followed by a final 5 min incubation at

72uC (MJ Research). PCR products were separated on 1.5%

agarose gels containing ethidium bromide for visualization. To

determine which types of Lso the psyllids had acquired, Lso

haplotyping was performed using Lso-SSR-1F/Lso-SSR-1R ac-

cording to Lin et al. [6] and Wen et al. [7] (Table 1), and cPCR

products were separated on 2.0% agarose gels containing ethidium

bromide. To assess Lso acquisition rate and copy numbers, qPCR

was performed using primers and probes targeting the Lso outer

membrane protein and the psyllid 28S rDNA(Table 1) [14,21]

with 3 replications per sample. Standard curve construction and

gene quantification for the Lso outer membrane protein and the

psyllid 28S rDNA (Table 1) were performed as described by

Sengoda et al. [14] and Marzachi and Bosco [22]. The qPCR with

Lso or 28S rDNA primers and probes consisted 12.5 ml TaqManH
Universal PCR Master Mix (Applied Biosystems; Roche Diagnos-

tics, Indianapolis, IN), 2.5 ml of each primer (9 mM), 2.5 ml of

labeled probe (2.5 mM), and 5 ml nucleic acid extracts (10 ng of

psyllids genomic DNA). Reactions were amplified on Chromo4

(BioRad) with the following cycling conditions: 50uC for 2 min,

95uC for 10 min, then 40 cycles of 95uC for 15 sec and 60uC for 60

sec. Lso copy numbers were calculated using Opticon 3 software

with a Ct cut off value of 37 and expressed per 10 ng of psyllid

genomic DNA. Interplate reproducibility was assessed by running

qPCR of a known quantity of genomic DNA from Lso-infected

psyllids (4.5 and 0.45 ng targeting the Lso outer membrane

protein) or genomic DNA from Lso-free psyllids (4.5, 0.45, and

0.045 ng targeting the psyllid 28S rDNA), along with experimental

samples and appropriate positive and negative controls. The

coefficient of variation of the average Ct values of different plates

was compared for both Lso and psyllid 28S rDNA.

The CL-ZC-F/CL-ZC-R (185 bp) and 28SF/R (67 bp)

amplicons obtained by cPCR were cloned using the TOPO TA

cloning kit (Invitrogen, Carlsbad, CA) with TOP 10 Escherichia coli

chemically competent cells. Plasmid DNA was extracted from

selected colonies using the QIAprep spin mini prep kit (QIAGEN,

Valencia, CA), and the DNA clones were sequenced by MC

Laboratories (MCLab, San Francisco, CA). The Lso outer

membrane protein plasmid, Lso-OMP, and potato psyllid 28S

rDNA and 28SF/28SR fragments were confirmed by BLASTn

analysis. The Lso-OMP plasmid and Lso-free psyllid genomic

DNA were used to construct standard curves as described below.

The Lso standard curve was constructed using Lso-OMP

plasmids for quantification of Lso copies in post-acquisition

psyllids and inoculum plants. The DNA copy numbers were

calculated as follows, assuming the average weight of a nucleotide

base pair was 660 Daltons:

DNA (copies/ml) = DNA (ng/ml)/(DNA (bp) * 16109 (ng/g) *

660 (Da/bp)/6.02261023 (copies/mol). Lso-OMP plasmids were

diluted to final concentrations of 2240000 copies/ml, 224000

copies/ml, 22400 copies/ml, 2240 copies/ml, 224 copies/ml, 22.4

copies/ml, 2.24 copies/ml in 2ng/ml or 40ng/ul of Lso-free psyllid

genomic DNA. In each dilution, 5ml was loaded to get 10 fold

serial dilution final concentrations of 11200000, 1120000, 112000,

11200, 1120, 112, and 11.2 Lso copies. Lso-free psyllid genomic

DNA was used to construct the insect standard curve. Insect

genomic DNA was diluted in water to a final concentration of 5

ng/ml, 0.5 ng/ml, 0.05 ng/ml, 0.005 ng/ml, and 0.0005 ng/ml. For

each dilution, 5 ml was loaded to get final concentrations of 25 ng,

2.5 ng, 0.25 ng, 0.025 ng, and 0.0025 ng. Identical fluorescence

threshold and baseline settings were used for comparability of

results. Amplification efficiency was calculated using the following

formula: E = 10‘-(1/slope).

Liberibacter Latent Period in Potato Psyllid
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Fluorescence in situ hybridization
Fluorescence in situ hybridization was performed using the

methods described in Cooper et al. [15] and Ammar et al. [23].

An adult psyllid anesthetized with CO2 was mounted on a glass

microscope slide with its ventral side facing up using double-sided

tape. A drop of phosphate buffered saline (Fisher Scientific,

Pittsburgh, PA) was placed over the insect and held in place by

cohesion. Using two #5 forceps (D’Outils Dumont SA, Mon-

tignez, Switzerland), the salivary glands were removed after gently

pulling the psyllid’s head away from the body. Both pairs of

primary and accessory salivary glands were then transferred to a

circle drawn with an Aquahold Barrier PAP pen (Scientific Devise

Laboratory, Des Plaines, IL) on a Tissue Tack Microscope slide

(Polysciences Inc., Warrington, PA). After removing the salivary

glands, the ventral plate of the insect was removed and the

alimentary canal was transferred to a separate Aquahold Barrier

circle.

The dissected tissues were air-dried at room temperature. The

slides were then maintained for 3-5 min on a slide warmer set at

50uC to adhere the tissues to the slides. Samples were fixed in

Carnoy’s solution (Electron Microscopy Sciences, Hatfield, PA) for

1 h, briefly rinsed in 100% ethanol, and washed three times for 20

min in hybridization buffer consisting of 20 mM Tris-HCl (pH 8.0)

(Fisher Scientific), 0.9 M NaCl (Fisher Scientific), 0.01% sodium

dodecyl sulphate (Indofine Chemical Company, Hillsborough,

NJ), and 30% formamide (Fisher, Scientific). Samples were

hybridized overnight with 250 pmoles/ml of HPLC-purified

oligonucleotide probe labeled with Alexa Fluor 488 on the 5-

prime end (Table 1) (Invitrogen, Carlsbad, CA) and dispersed in

hybridization buffer. During probe hybridization, samples were

kept under humid conditions within an environmental chamber

(Percival Scientific, Inc., Perry, IA) maintained at 25 6 0.5uC with

the lights off. After hybridization, samples were briefly washed in

hybridization buffer, followed by two washes for 20 min in

hybridization buffer, and one 20-min wash in tris-buffered saline

(Fisher Scientific). The presence of Lso was detected at 200 or

4006using a fluorescence microscope (Zeis Axioskop 40 FL, Carl

Zeiss USA, Thornwood, NY) with Zeiss filter-set 09 (excitation

wavelength = 450-490 nm, beam splitter = 510 nm, and emission

wavelength = 515 nm). Infected tissues fluoresced in green whereas

non-infected tissues appeared yellow (Fig. 1). Occasionally, low-

level white light was used to position the slides or to verify the

absence of cuticle fragments, which auto-fluoresced green and

appeared similar to the fluorescence of the Alexa Fluor 488 probe.

Samples were photographed using a DP25 camera mounted to the

microscope and operated using the CellSens software (Olympus

America Inc., Central Valley, PA).

Statistical analysis
Lso copy numbers in psyllids were compared among combina-

tions of AAP, incubation period, and inoculum host using the

GLIMMIX (Restricted Maximum Likelihood) procedure of SAS

9.3 (SAS Institute 2012). AAP, Lso incubation period, inoculum

host, and the main effect interactions were included as the fixed

effects. Trial was included as the random variable. Corrected

denominator degrees of freedom were obtained using the

Kenward-Roger adjustment (DDFM = KR option of the MODEL

statement). Residual and normal quantile-quantile plots were used

to examine data for evidence of heterogeneity of variance and

non-normality of errors, respectively. Based on these plots, the

DIST = LOGN option was included in the MODEL statement.

Where differences among fixed effects were indicated, differences

among means were compared using the ADJUST = SIMULATE

option of the LSMEANS statement.

Acquisition and transmission of Lso by potato psyllids were

assessed in separate analyses using logistic regression (PROC

GLIMMIX). The dependent variable for analysis of Lso acqui-

sition was the number of infected psyllids divided by the total

number of psyllids whereas the dependent variable for analysis of

Lso transmission was the number of infected plants divided by the

total number of plants in each trial. Logistic regression (PROC

GLIMMIX) was also used to assess localized infection of psyllid

salivary glands and alimentary canals observed using fluorescence

in situ hybridization. The dependent variables were the number of

psyllids with infected salivary glands or infected alimentary canals

divided by the total number of psyllids tested in each trial. In all

four analyses, the fixed effects were AAP, incubation period,

inoculum host, and each main effect interaction. Wald 95%

confidence intervals for odds ratios were used to compare means

when significant main effect interactions were observed.

To assess the relationship between Lso copy numbers in psyllids

and plant infection, Lso copy numbers were categorized into six

groups based on Lso copy distribution: 1) 0 copies, 2) 1 to 1000

copies, 3) .1000 to 10,000 copies, 4) .10,000 to 100,000 copies,

5) .100,000 to 1 million copies, and 6) .1 million copies. The

probability of plants becoming infected by psyllids with Lso copies

in each respective population size class was compared using

logistic regression as described above with the proportion of

infected plants divided by the total number of plants as the

dependent variable, and Lso population size-class as the fixed

effect.

Separate contingency table analyses (PROC FREQ of SAS 9.3)

were used to determine whether colonization of the alimentary

canal or salivary glands by Lso was associated with transmission of

Lso by the insect. Contingency table analysis was also used to

compare Lso latent period in insects and the proportion of plants

infected with Lso haplotype A versus haplotype B. Trial was

controlled in each contingency table analysis, and statistical

differences were assessed based on the Conchran-Mantel-Haenszel

row mean score statistic [24].

Results

Zebra chip disease evaluation in potato plants and
tubers

Foliar and tuber symptoms associated with Lso infection

consistent with those described by Munyaneza [4], Munyaneza

et al. [8–9], and Sengoda et al. [25] were observed in potato plants

exposed to psyllids that effectively acquired Lso and in which the

bacterium completed the latent period. About 29.6% of the plants

showed foliar and tuber symptoms of zebra chip 3 to 4 weeks after

inoculation and were characterized by plant stunting, shortened

internodes, yellowing and purpling of leaves, and upward curling

of leaves [4]. Also, tubers produced by Lso-infected plants

exhibited typical symptoms of zebra chip disease [4]. Between

60 and 80% of the positive control plants (plants infested with

psyllids from the Lso-infected laboratory colony) developed foliar

symptoms associated with Lso infection. The different assessment

methods of Lso infection (foliar symptoms, tuber symptoms, cPCR

and qPCR diagnosis) were highly consistent; 100% of plants that

exhibited foliar and tuber symptoms associated with Lso infection

and zebra chip disease also tested positive for the bacterium by

PCR.

Lso copy numbers
The qPCR targeting the outer membrane protein of Lso

generated linear regression lines with a slope between –3.31 and

3.37 (3.3460.022) with amplification efficiencies of 98.0–99.5%.

Liberibacter Latent Period in Potato Psyllid
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The qPCR targeting the psyllid 28S rDNA, had linear regression

lines with a slope between –3.29 and 3.33 (3.3160.016) with an

amplification efficiency of 100%. The coefficient of variation of

the average Ct values was 0.01 (1%) for both Lso (4.5 and 0.45 ng

of Lso-infected DNA) and psyllid 28S rDNA (4.5, 0.45, and 0.045

ng of Lso-free psyllid genomic DNA), suggesting that qPCR is

highly reproducible and consistent with the previous report by

Sengoda et al. [14].

Lso copy numbers varied in insects subjected to different AAPs

(24 versus 72 h) and held for different incubation periods (0, 1, 2,

and 3 weeks post-inoculation) (Table 2). Inoculum host (potato

versus tomato) did not influence Lso copy numbers in psyllids. The

lack of significant main effect interactions indicated that the effects

of AAP on Lso copy numbers were independent of weeks of

incubation period and inoculum host, and the effects of incubation

period were independent of AAP and inoculum host (Table 2). Lso

copy numbers were generally higher in insects subjected to a 72-h

AAP compared with those subjected to a 24-h AAP. The mean log

Lso copy numbers (6S.E.) for psyllids subjected to 24 and 72-h

AAP was 8.5 (60.31) and 9.3 (60.27), respectively, regardless of

week of incubation period. In addition, Lso copy numbers

increased from week 0 to week 2 of the incubation period, but

did not differ between weeks 2 and 3 (Fig. 2).

Acquisition and transmission of Lso
The proportion of psyllids that tested positive for Lso by qPCR

differed between those subjected to 24 and 72-h AAP, and among

psyllids held for different incubation periods (Table 2). Inoculum

plant host did not influence the proportion of psyllids that tested

positive for Lso, and there were again no main effect interactions

(Table 2). The mean (695% confidence intervals) proportion of

psyllids exposed to Lso-infected plants for a 24- and 72-h AAP and

tested positive for Lso by qPCR was 0.57 (0.392 – 0.734) and 0.77

(0.602 – 0.876), respectively, regardless of week of incubation

period. Significantly fewer psyllids tested positive for Lso on week

0 of the incubation period than on weeks 1 through 3 (Fig. 3A).

Lso transmission rates differed significantly among weeks of

incubation period, but did not differ between insects subjected to

different AAPs or inoculum plant hosts (Table 2). The lack of

significant main effect interactions indicated that the effects of

incubation period on Lso transmission were independent of AAP

and inoculum host (Table 2). None of the plants exposed to insects

during weeks 0 or 1 tested positive for Lso using both cPCR and

qPCR, but nearly 30% of plants exposed to insects during weeks 2

and 3 were infected (Fig. 3B), suggesting that the latent period for

Lso in an adult potato psyllid is about 2 weeks. It is important to

note that contingency table analysis did not indicate significant

differences in the proportion of insects or plants infected with Lso

haplotype A versus Lso haplotype B between 2 or 3 weeks of

incubation period (row mean score = 0.06; d.f. = 1; P = 0.79).

Figure 1. Lso infection in the (A) alimentary canal and (C) the salivary glands of potato psyllids. Green fluoresence indicates the
presence of Lso while non-infected tissues appear yellow. Lso non-infected psyllids showed no green fluoresence in the (B) alimentary canal and (D)
the salivary glands.
doi:10.1371/journal.pone.0093475.g001
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Lso infection of psyllid alimentary canal and salivary
glands

There were no statistical effects of AAP, incubation period, or

host plant on the probability of detecting Lso infection using

fluorescence in situ hybridization in the psyllid alimentary canal,

and there were no significant interactions among factors (Table 2;

Fig. 4A). AAP and inoculum host did not influence the probability

of detecting Lso infection in psyllid salivary glands, but the

proportion of salivary glands infected with Lso did increase with

increasing length of the incubation period (Table 2; Fig. 4B). The

lack of significant interactions among factors indicated that the

effects of incubation period on colonization of salivary glands by

Lso were independent of AAP, inoculum host, and the AAP by

inoculum host interaction.

Relationships between Lso infection of psyllids and
transmission of Lso to host plants

To determine the Lso copy numbers required for successful

transmission of Lso to the host plant, Lso copies were empirically

categorized into 6 groups as described in the materials and

methods. Logistic regression showed that Lso transmission was

dependent upon Lso copy numbers (F = 4.0; d.f. = 5, 106;

P,0.01). No psyllids with fewer than 10,000 Lso copies

transmitted Lso to their host plants, and the probability of plants

Table 2. Statistical analyses examining Lso copy numbers in psyllids, the proportion of psyllids and plants infected with Lso, and
the proportion of psyllids with infected alimentary canals and salivary glands.

Model Effect
Lso copy numbers in
Psyllidsa

Proportion of psyllids
infected with Lsoa

Proportion of plants
infected with Lsoa

Proportion of psyllids
with infected
alimentary canalsb

Proportion of psyllids
with infected salivary
glandsb

Acquisition Access
Period (AAP)

F1, 160 = 4.2; P = 0.04 F1, 15 = 9.4; P,0.01 F1, 15,0.14; P = 0.25 F1, 16 = 0.2; P = 0.71 F1, 16 = 0.1; P = 0.99

Incubation period F3, 160 = 40.3; P,0.01 F3, 15 = 5.0; P = 0.01 F3, 15 = 16.8; P,0.01 F3, 16 = 0.7; P = 0.57 F3, 16 = 5.2; P = 0.01

AAP6 Incubation
period

F3, 160 = 0.5; P = 0.70 F3, 15 = 1.3; P = 0.32 F3, 15,0.5; P = 0.68 F3, 16 = 0.7; P = 0.57 F3, 16 = 0.2; P = 0.93

Host Plant F1, 160 = 0.1; P = 0.75 F1, 15 = 2.2; P = 0.16 F1, 15,0.1; P = 0.87 F1, 16 = 1.6; P = 0.23 F1, 16 = 0.1; P = 0.99

AAP 6Host F1, 160 = 0.2; P = 0.65 F1, 15 = 0.1; P = 0.98 F1, 15,0.2; P = 0.67 F1, 16 = 0.1; P = 0.99 F1, 16 = 0.1; P = 0.99

Incubation period 6
Host

F3, 160 = 1.6; P = 0.20 F3, 15 = 1.5; P = 0.26 F3, 15 = 0.2; P = 0.92 F3, 16 = 1.6; P = 0.24 F3, 16 = 0.1; P = 0.96

APP6 incubation
period 6Host

F3, 160 = 0.8; P = 0.51 F3, 15 = 0.4; P = 0.76 F3, 15 = 0.1; P = 0.98 F3, 16 = 0.8; P = 0.52 F3, 16 = 0.6; P = 0.62

aPresence of Lso assessed using quantitative real-time PCR.
bPresence of Lso assessed using fluorescence in situ hybridization.
doi:10.1371/journal.pone.0093475.t002

Figure 2. Relationship between acquisition access period, incubation period, and Lso copy numbers in potato psyllids. Different
letters indicate significant differences in Lso copy numbers among weeks regardless of acquisition access period.
doi:10.1371/journal.pone.0093475.g002
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becoming infected increased with increasing Lso copies in psyllids

with more than 10,000 copies (Fig. 5).

On average, fluorescence in situ hybridization analysis showed

that 17.8% of psyllids with infected alimentary canals and 9.5% of

psyllids with non-infected alimentary canals transmitted Lso to

their host plants. Contingency table analysis did not indicate that

transmission of Lso differed between psyllids with infected and

non-infected alimentary canals (row mean score = 1.8; d.f. = 1;

P = 0.18). Transmission of Lso differed between psyllids with

infected and non-infected salivary glands (row mean score = 4.5;

d.f. = 1; P = 0.03) with 25% of psyllids with infected salivary glands

successfully transmitting Lso to host plants compared with 9.3% of

psyllids with non-infected salivary glands. Categories with zeros

excluded from the statistical analysis.

Contingency table analysis did not indicate significant differ-

ences in the proportion of plants infected with Lso-haplotype A

versus haplotype B between weeks of latent period (row mean

score = 0.06; d.f. = 1; P = 0.79). Lso-haplotype B infected 82.9%

of plants whereas haplotype A infected only 17.1% of plants,

regardless of week of latent period. All inoculum plants tested

positive for both Lso haplotype A and Lso haplotype B (data not

shown).

Discussion

Results of the present studies were consistent with those from a

number of previous studies. As also reported by Sengoda et al.

[14], Lso copy numbers were greater in psyllids subjected to a 72-h

AAP compared with those allowed a 24-h AAP. Also consistent

with results reported by Sengoda et al. [14], Lso copy numbers in

psyllids increased from week 0 to week 2 of the incubation period

before reaching a plateau with copy numbers comparable to those

in psyllids from Lso-infected colonies. By week 3 of the incubation

period, Lso was observed in the salivary glands of about 40% of

the psyllids, which is consistent with fluorescence in situ hybrid-

ization observations made by Cooper et al. [15]. Results of the

present study indicate that at least a two-week latent period is

required for Lso multiplication and movement in potato psyllid

adults and for the insects to successfully transmit the bacterium to

Figure 3. Proportion of potato psyllids (A) or plants (B) to test positive for Lso using quantitative real-time PCR. Different letters
indicate significant differences among weeks, regardless of acquisition access period.
doi:10.1371/journal.pone.0093475.g003
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new host plants. Findings from this study also indicate that Lso

copy numbers greater than 10,000 and colonization of the salivary

glands by Lso are required for psyllids to effectively transmit the

bacterium. A closely related pathogen, ‘‘Ca. Liberibacter asiati-

cus,’’ transmitted by the Asian citrus psyllid also multiplies in the

vector and colonizes its salivary glands, but the latent period

required for the citrus psyllid to become infective is not known

[23,26,27].

Upon analyzing the Lso haplotype in the psyllids used in this

study, haplotypes A and B were detected in 81 and 17% of the

insects, respectively. It is important to note however that no

significant difference was observed in latent period of Lso in the

psyllids between the two haplotypes. Additionally, while four

different psyllid haplotypes exist [10,13], all psyllids used in this

study were of the Central haplotype. Psyllids of this Central

haplotype have been identified in the Central United States, where

the zebra chip disease was initially reported in the United States in

the early 2000s, and where growers have experienced the

economically devastating effects of the disease [4].

Although 60–80% of psyllids tested positive for Lso using

qPCR, Lso was observed in less than 50% of psyllid salivary glands

by week 3 of the incubation period. Less than 40% of plants that

were exposed to psyllids for 24 h became infected with Lso. These

findings are consistent with a previous study that used ‘Ranger

Russet’ potato as a host to test infectivity of psyllids [15]. That

study indicated that 100% of psyllids tested positive for Lso by

PCR, but only 40% of psyllids had infected salivary glands, and

less than 60% of plants inoculated with psyllids became infected

with Lso. Several factors could potentially account for these

inconsistencies in Lso infection rates in psyllids and Lso

transmission rates by psyllids. First, our methods detect the

establishment of Lso in plants, not necessarily the transmission rate

by psyllids. Therefore, the actual transmission rates might be

higher if plant defenses [28–30] occasionally prevent Lso infection

or prevent Lso from moving from the initial inoculation site.

Second, insect immune systems or other barriers within the insects

may prevent the pathogen from either passing through the midgut

Figure 4. Proportion of psyllids with an infected alimentary
canal (A) or salivary glands (B). Different letters indicate significant
differences in infection rates among weeks.
doi:10.1371/journal.pone.0093475.g004

Figure 5. Relationship between Lso copy numbers in psyllids and transmission rates to host plants. Different letters indicate significant
differences among Lso copies groups.
doi:10.1371/journal.pone.0093475.g005
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wall or colonizing the salivary glands [15]. Finally, the methods of

detecting Lso in insects or plants used in this study may fail to

detect low levels of Lso infection. Significantly fewer psyllids tested

positive for Lso on week 0 of the incubation period compared with

weeks 1, 2 and 3 indicating that qPCR failed to detect Lso in some

of the psyllids on week 0. It is possible that Lso is present in more

host plants than observed, but below detectable levels, and the

relationship between Lso infection and development of symptoms

in plants is not well understood. Detection of Lso using fluorescent

in situ hybridization is not perfect either because tissues or partial

tissue samples are sometimes lost. Therefore, infection of salivary

glands was likely higher than observed.

In summary, under the conditions used in this study, we indicate

that a two-week latent period at temperatures ranging from 24–

28uC is required for Lso to multiply and colonize the salivary

glands of potato psyllids and for these insects to effectively transmit

the bacterium to new host plants. These findings based on qPCR,

fluorescence in situ hybridization, and the potato as a biological

assay host suggest that acquisition and transmission of Lso by

potato psyllids follows a pattern consistent with a propagative,

circulative, and persistent mode of transmission [31–33]. The

documentation of patterns in Lso acquisition and transmission by

the potato psyllid contributes to a better understanding of the

epidemiology of this bacterium and related diseases. This

knowledge should improve the interpretation of results from field

studies investigating Lso transmission among host plants. Further-

more, this information could improve the efficiency of monitoring

infective psyllid populations and of timing insecticide applications

to prevent zebra chip and other potato psyllid-transmitted

diseases. Since only psyllids of the Central haplotype were used

in the present study, additional research is needed to investigate

interactions between the different haplotypes of Lso and those of

the potato psyllid.
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